AD-A211 408

NRL Memorandum Report 6493

SMMS Software Module Guide

MARK R. CORNWELL

Center for Secure Information Technology Branch

Information Technology Division
! , rg -y
(-J~

£Y ELECTE

AUG 15 198
3 July 28, 1989

Approved for public release; distribution unlimited.

R SN

[P

N .
[\

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARK NGS

2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION - AVA'LABILITY OF REPQORT
Approved for public release; distribution

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
NRL Memorandum Report 6493

S5 MONITORING ORGANIZATION REPORT fiLMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

(If applicable)

Naval Research Laboratory Code 5540

73 NAME OF MONITORING ORGANIZATON

6c. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

7b ADDRESS{(City, State and ZIP Code)

8a NAME OF FUNDING /SPONSORING
ORGANIZATION

Space & Naval Warfare Sys Cmd

8b OFFICE SYMBOL
(if apphcable)

9 PROCUREMENT INSTRUMENT DENTIRICATION NUMBER

8¢. ADNRESS {City, State, and 2IF Code)

Washington, DC 20363-5100

10 SOURCE Of FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
35167G 68003

11 TITLE (Include Security Classification)

SMMS Software Module Guide

12 PERSONAL AUTHOR(S)
Cornwell, M.R.

13a TYPE OF REPORT
Interim

13b TIME COVERED

rFROM 1/86 108/88

14 DATE OF REPORT (Year, Month, Day)
1989 July 28

15 PAGE COUNT

24

16 SUPPLEMENTARY NOTATION

l/’

documentation. {
.]

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software engineering Software design
Trusted systems _. Computer security.
b Software documentation < Message svafems —< —
r\Q- ABSTRACT (Continue on reverse if necessary and identify by block number) ! , I({(} A
C L

This document describes the 'x{lodule decomposition for the Secure Military Message System (SMMS)
full scale prototype software being produced at the Naval Research Laboratory. It provides an orientation for
software engineers who are new to the SMMS, explains the principles used to design the structure, and shows
how responsibilities are allocated amoj\lg the major modules.

The guide is intended to lead a reader to a module that implements a particular aspect on the system. It
states the criteria used to assign a particylar responsibility to a module and arranges the modules in such a
way that the reader can find the information relevant to this purpose without searching through unrelated

20 DISTRIBUTION * AVAILABILITY OF ABSTRACT

& unceassipien.uneaited [0 same as RPT) oric users

21 ABSTRACT SECURITY (LASSIFICATION

UNCLASSTFIED

22a NAME OF RESPONSIBLE INDIVIDUAL
Mark R. Corpwell

22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

(202) 767-6698 Code 5540

DD Form 1473, JUN 86

Previous editions are obsolete

SECURITY (LASSIHCATION OF THIS PALE

S/N 0102-LF-014~6603

-

CONTENTS

INTRODUCTION ...t e et

PUTPOSE ...t i e e ettt et e e aaas
Program Familieso
Prerequisite Knowledge ..o
OFBANIZATIONttt et e e et et et e e
AcknowledZement o i e e

BACKGROUND .o e

Design PrinCiples ... e
Module Decompositionciiiiiiiiiiiiiiiii e e
Security Assertions for Moduiesoooiiiiiiiiiiiii e
Module Initializationcooviiviiiiiii e

A: Top-Level DecomPOSItioncoiiiiviiiniiiiiiiiiii et e e er e

A:1 Hardware-Hiding Module ...
A:2 Behavior Hiding Modulecooiiiii
A:3 Software Decision Module ...

B: Second-Level DecOMPOSIHONc.iuiiiiiiiiiietii et e e

B:1 Hardware-Hiding Module Decompositionccooiiiiiiiniiini v,
B:1.1 Abstract Base Machine Module ...t
B:1.2 Device Interface Moduleoooiiiiiiiiiiii e

B:2 Behavior-Hiding Module Decompositioncoovuieiiiiiviiiiiniinie i eiee e,
B:2.1 Intermediate Command Language Modulecccoiiviiininiiiiiiin A
B:2.2 Human Interface Module ..o,
B:2.3 Security Policy Moduleooiiiiiiiiiii e
B:2.4 External Formats Module ..o

B:3 Software Decision Module DeCOmPOSIIONoeevnirieie et
B:3.1 Software Utility Modulec..coooiivininnen, O
B:3.2 System Generation Module ...

C: Third-Level DecompPoSItionccoiiiuiiiiemiri e e

C:1 Hardware Hiding Module ...
C:1.1 Abstract Base Machine Module Decompositionc.ooviereeniiieeiieieeanninnn,
C:1.1.1 File System Module (R)ooiiiviiiiiiiii e

1.2 Domain Definition Module (R) ...
1.3 Exclusions Regions Moduleooiiiiiiiniiii
1.4 Process Control Moduleoooiiiiiiiii e,
1.5 Process Synchronization Moduleoo i
1.6 Programming Language Modulec.cooiiiiiiiiiiii
1

:1.
:1.
1.
1.
1.
:1.1.7 Security Level Module ...,

o000 0n

ila

Iv.

V.

C:1.2 Device Interface Module Decompositionc.coooiviiiiiiiiiiiniinieeea, 11

C:1.2.1 Terminal Interface Moduleoooiiiiiiiiiiiii 11
C:1.2.2 Printer Interface Modulecoooiiiiiiiiiiiiiiii 12
C:1.2.3 Reader Interface Module 12
C:1.2.4 Network Interface Modulecccooiiiiiiiiiiii 12
C:2 Behavior Hiding Module Decompositionccoooviiiiiiviiiiiiiie e 12
C:2.1 ICL Module DecompoSItioncooiuiiiiiiiiininiiiiniin i 12
C:2.1.1 Command Processing Modulec.ociiiiiiiiiiiiiiiiiiica 12
C:2.1.2 Entity Data Types Module (H)oooii i, 12
C:2.1.3 ICL Command Module (H)ccoiiiiiiiitiiiiiiiii it eeeaas 13
C:2.2 Human Interface Module Decompositionccoviiiiiiiiiiiiiiiiii e 13
C:2.3 Security Policy Module Decompositioncccooviiiiiiiiiiiiiiiiin 13
C:2.3.1 Entity Monitor Modulecoooiiiiiiiiiiiii e 13
C:2.3.2 Message Entity Conversion Moduleooin 14
C:2.4 External Messages Module Decompositioncccoiiiiiiiiiiiiniiiniiiinn. 14
C:2.4.1 Message Formats Moduleoooii 14
C:2.4.2 Message Accountability Logs Module 14
C:3 Software Decision Module Decompositionc.coviiiiiiniiiiiiiinin . .14
C:3.1 Software Utility Module Decompositionccooieiiviiiiiiiiiiiniiinni, 14
C:3.2 System Generation Module Decompositionc.ccccviiviiiiiiiiiiiniiiiinn, 14
C:3.2.1 System Generation Parameter Modulec.c 14
C:3.2.2 Module Version Selection Modulec.coooiiiiiiiiiiiiiii 14
C:3.2.3 Subset Selection Modulecooviiiiiiiiii 14
C:3.2.4 Support Software Module 15
REFERENCES ...ttt ettt e et st s e e et e e et a e e reas 16
GO S AR Y o i e e et 17
Accesion For Ty T
NTIS CRA&I
DTIC TAB
Unannounced O
Justification
By .
Distridution |
Avaiiability Codes
‘ I Avall andfer
Dist \ Special
A4

-

SMMS SOFTWARE MODULE GUIDE
I. INTRODUCTION

PURPOSE

The Secure Military Message System (SMMS) Software Module Guide describes the module
structure of the secure military message systems software produced by the Naval Research Labora-
tory. It provides an orientation for software engineers who are new to the SMMS, explains the princi-
ples used to design the structure, and shows how responsibilities are allocated among the major
modules.

This guide is intended to lead a reader to the module that implements a particular aspect of the
system. It states the criteria used to assign a particular responsibility to a module and arranges the
modules in such a way that a reader can find the information relevant to this purpose without search-
ing through unrelated documentation.

The module guide should be read before any other design documentation for the SMMS
software, because the guide defines the scope and contents of the individual design documents.

This guide describes and prescribes the module structure. Changes in the structure will be
promulgated as changes to this document. Changes are not official until they appear in that form.
This guide is a rationalization of the structure, not a description of the design process that led to it.

PROGRAM FAMILIES

The term program family applies to related programs in a way analogous to how the term
hardware family applies to related computer hardware. The concept of a hardware family was intro-
duced with the IBM/360 family of computers and is now well established. The IBM/360 family con-
sists of a number of computer hardware systems that share a common set of design decisions (mainly
concerning the instruction set) but differ in ways {(cost, performance, physical dimensions, hardware
technology) that allow different family members to fulfill different needs.

Two programs are said to be part of the same family if it is beneficial to consider their similari-
ties before considering their differences (1]. Similar software applications may offer different enough
requirements that the same program will not satisfy the needs of both. However, the requirements
might be satisfiable by two different programs that share many common design decisions and much of
the same code. An approach to system design that strives to take advantage of these similarities by
making common design decisions early and striving to maximize commonality between the different
programs is termed a family approach to designing software. This family approach should reduce
costs by avoiding duplication of effort over the lifecycle of the software. Effort spent on designing,
programming, maintaining, and enhancing a family of similar systems should be less than that
required to perform the same services on independently developed systems.

The SMMS Family is composed of a number of diflerent systems that share a core of common
design decisions. Among the common design decisions is the module structure. This common module
structure should contribute to our ability to share code, design effort, and security analysis effort
across family members. The structure described in this guide provides a common module decomposi-
tion used by all the systems in the SMMS family.

PREREQUISITE KNOWLEDGE

Readers are assumed to be familiar with the terminology and organization of Software Require-
ments for the Secure Military Message System Family |2, which will be referred to as “the require-
ments document”; the first chapter of the requirements document. in particular, will be referred as
“‘the security model”: and with Security Architecture for a Secure Military Message System (3], which
will be referred to as “the security architecture”. They should have a general idea of the functions
performed by securs military message system software, know something about electronic mail, mes-
sage processing, and computer security models. These are described in adequate detail in the above
documents.

Manuscript approved October 26, 1988,

ORGANIZATION

Section II gives the background for the design. It states 1) the goals that motivated the module
design decisions presented in this document; 2) the basic principles on which the design is based; and
3) the relationship between the module structure and other structures of the SMMS software.

Section II, the main body of the document, presents a hierarchical decomposition of the
software into top-level, second-level, and third-level modules. The modules at each level are com-
ponents of modules of the next higher level.

Terms, such as “modules”, that are used with a special meaning in NRL’s Software Cost Reduc-
tion (SCR) methodology, are defined in the glossary. Readers who are not familiar with the SCR ter-
minology should study the glossary before reading further.

ACKNOWLEDGEMENT

This module guide is an adaptation of the A-7TE Software Module Guide {NRL Memorandum
Report 4702) by K.H. Britton and D.L. Parnas [10]. Much of the introductory material is taken ver-
batim with the minor modification of substituting “SMMS family” for “A-7E”. This was possible
because that material describes general software engineering principles that we have chosen to adopt
for the SMMS. The top-level module decomposition of the A-TE design has been maintained in the
SMMS design. The decomposition at lower levels differs and is more specific to the SMMS.

II. BACKGROUND

THE SMMS SOFTWARE STRUCTURES

A structural description of a software system shows the program’s decomposition into com-

ponents and the relations between those components. SMMS programmers must be concerned with
four structures: (a) the module structure, (b) the uses structure, (c) the process structure, and (d) the
domain structure. This section contrasts these structures.

(a)

(d)

A module is a work assignment for a programmer or programmer team. Each module consists
of a group of closely related programs. The module structure is the decomposition of the pro-
gram into modules and the assumptions that the team responsible for each module is allowed to
make about the other modules.

In the uses structure the components are programs, i.e., not modules but parts of modules; the
relation is ‘‘requires the presence of”’. We say one program uses another program if the former
requires the presence of the latter in order to meet its specification. The uses structure deter-
mines the executable subsets of the software [4]. Guidelines for the design of the SMMS uses
structure are given in {5].

The process structure is the decomposition of the run-time activities of the system into units
known as processes. A process is a subset of the run-time events of the system used as adminis-
trative units in the run-time allocation of processors. Processes are not programs; there is no
simple relation between modules and processes. The implementation of some modules may
include one or more processes, and any process may invoke programs in several modules.
Guidelines for the SMMS process design are given in [6].

The domain structure is the decomposition of access privileges to data and programs into sets
known as domains. At any instant, each process is associated with a domain that determines
what run time activities may be part of that process. For example. one domain may allow a
process to alter the security markings of objects while another may not. The domain structure
of the SMMS is described in {3].

The rest of this document describes the module structure.

GOALS OF THE SMMS MODULE STRUCTURE

The decomposition into modules has two overall goals. The first goal is to increase security

assurance by allowing those modules that impact the security of the system to be isolated and
analyzed. The second goal is reduction of software cost by allowing modules to be designed and
revised independently. This goal also includes reduction in cost for the family by allowing different
family members to be generated by substituting, adding, or deleting modules.

(a)

(b)

()

Specific security assurance goals of the module decomposition are:
The responsibility of each module for maintaining system security should be explicit.

Each module should be simple enough that its security assertion can be verified.

Specific cost-reduction goals of the module decomposition are:

It should be possible to change the implementation of one module without knowledge of the
implementation of other modules and without aflecting the behavior of other modules.

The ease of making a change in the design should bear a reasonable relationship to the likeli-
hood of the change being needed. It should be possible to make likely changes without changing
any module interfaces: less likely changes may involve interface changes, but only for modules

that are small and not widely used. Only very unlikely changes should require changes in the
interfaces of widely used modules.

(e) It should be possible to make a major software change as a set of independent changes. Pro-
grammers changing the individual modules should not need to communicate. If the interfaces of
the modules are not revised, it should be possible to run and test any combination of old and
new module versions. .

As a consequence of the goals above, the SMMS software is composed of many small modules.
They have been organized into a tree-structured hierarchy; each nonterminal node in the tree
represents a module that is composed of the modules represented by its descendents. The hierarchy is
intended to achieve the following additional goals:

(f) A software engineer should be able to understand the responsibility of a module without under-
standing the module’s internal design.

(g) A reader with a well-defined concern should easily be able to identify the relevant modules
without studying irrelevant modules. This implies that the reader be able to distinguish
relevant modules from irrelevant modules without looking at their components.

DESIGN PRINCIPLES

The SMMS module structure is based on two decomposition criteria: proof-based decomposition
[3] and information hiding [7]. The first criterion is concerned with security assurance, the second
with ease of change.

A security proof forms the basis for generating the list of security critical properties, and for ver-
ifying that, taken together. these properties form a sufficient condition for the system to be secure.
According to the proof-based methodology, those properties upon which the security of the system
rests should be encapsulated in verifiable modules. A property of the system is encapsulated in a
module M if it is imnpossible to invalidate that property by altering any module other than M. (One
possible approach to showing that a property cannot be invalidated is to assume that the mechanisms
supporting the domain structure function correctly and base arguments on that domain structure.) If a
property is thus encapsulated, then it is possible to verify that the property holds for the system by
inspecting only the module in which the property is encapsulated.

The security proof is documented in a separate document and is not described further in this
guide. Refer to the security architecture and security proof documentation {3,11] for specific details
about the proof.

According to the the information hiding principle, system details that are likely to change
independently should be the secrets of separate modules; the only assumptions that should appear in
the interfaces between modules are those that are considered uniikely to change. Every data structure
is private to one module; its variables may be directly accessed by one or more programs within the
module but not by programs outside the module. Any other program that requires information stored
in a module’s data structures must obtain it by calling that module’s programs.

Applying this principle is not always easy. It is an attempt to minimize the expected cost of
software and requires that the designer estimate the likelihood of changes. Such estimates are based
on past experience, and may require knowledge of the application area, as well as an understanding of
hardware and software technology.

In a few cases information that is likely to change must be communicated between modules. To
reduce the cost of software changes, use of some modules or portions of a module interface, may be
restricted. Restricted interfaces are indicated by “(R})” in the documentation. Often the existence of

_]

certain smaller modules is itself a secret of larger modules. In a few cases, we have mentioned such
modules in this document in order to clearly specify where certain functions are performed. Those
modules are referred to as hidden modules and indicated by “(H)” in the documentation.

MODULE DECOMPOSITION

Four ways to describe a module structure based on information-htuing are: (1) by the roles
played by the individual modules in the overall system operation; (2) by the secrets associated with
each module; (3) by the facilities provided by each module; and (4) by the security properties encapsu-
lated in each module. This document describes the module structure by characterizing each module’s
secrets. Where useful, we also include a brief description of the role of the module. The description of
facilities is relegated to the module specifications (e.g. [8]).

For some modules we find it useful to distinguish between a primary secret, which is hidden
information that was specified to the software designer, and a secondary secref which refers to the
implementation decisions made by the designer when implementing the module designed to hide the
primary secret.

Although we have attempted to make the decomposition rules as precise as possible, the possibil-
ity of future changes in technology makes some of the boundaries fuzzy. Some sections point out
fuzzy areas and discuss additional information used to resolve ambiguities.

SECURITY ASSERTIONS FOR MODULES

For those modules that have some security responsibility we provide a description of that
responsibility. At this level of detail, the security responsibility is stated in general terms. It is
intended that the module interface specifications make these security assertions more precise as the
module interfaces are refined.

Separate documents provides the supporting evidence that we have satisfied the proof-based
decomposition criteria. A security architecture provides an overview of the structures of the system
as it relates to security and our rational fo. asserting the structures defined provide the required secu-
rity. Stronger evidence will be provided by a security proof that derives from the formal security
model a set of assertions that taken together make up a sufficient condition for the system to be
secure.

Assurance must also be provided that the security assertions for the modules hold for the
module implementations generated by the programmers. The security assertions are intended to be
verifiable by inspection of the code and specifications. This inspection may include formal (mathemat-
ical) verification techniques. In some cases, mathematical techniques will not be applicable and
assurance will have to rely on the strengths of the arguments provided by the implementors and the
soundness of the reviewers’ judgement.

MODULE INITIALIZATION

Every module in the SMMS software can contain variables that must be given initial values
when the SMMS software is started up. Each module contains a program for initialization, that wiil
be called when startup occurs. There will be a main initialization program that is invoked upon
startup. It will invoke the initialization programs for the three top-level modules. The initialization
program for a module will call the initialization programs for selected second-level modules.

The initialization program for a module at the leaf of the module tree is a part of that module.
The initialization program for a higher level module is contained in a submodule of M, called the ini-
tialization module of M. These initialization modules will not be described further in this document.

FUTURE ADDITIONS TO MODULES

It is often the case that a particular version of the system may not need features of a module
that are likely to be needed in other versions. Where we have identified features that may not be
needed in the initial version, they are included in the module interface descriptions but it is noted that
they will not be needed in the initial version. The programmer can use this information about likely
future additions to design his software for easier extension (4].

TREATMENT OF UNDESIRED EVENTS

Development versions of all modules will check for and report undesired events (UEs). Each
module interface description contains a list of possible UEs. In general, such a list should constitute a
classification of all the things that might go wrong. It should include hardware errors. software errors
and errors caused by the using program. However, some of the UE detection and correction must be
removed from the production version to improve performance. In the SMMS context, module
specifications will say what UE detection and correction may and may not be removed. For a more
complete discussion of UEs see [9].

Attempted security violations will normally be treated as UE’s. Attempted security violations
include such events as a user trying to display a message on a terminal whose classification does not
dominate that of the message, or a user without proper authorization trying to release a message.

The remainder of this report provides a top-down overview of the module structure.

m. SMMS MODULE STRUCTURE

A: TOP-LEVEL DECOMPOSITION
The software system consists of the three modules described below.

A:1 HARDWARE-HIDING MODULE

The Hardware-Hiding Module includes the programs that need to be changed if any part of the
hardware or its operating system software is replaced by a new unit with a different
hardware /software interface but with the same general capabilities. Any likely replacement of
hardware or operating system software should not require changes to the interface to this module.
This module implements a virtual hardware and operating system base that is used by the rest of the
SMMS software.

A:2 BEHAVIOR HIDING MODULE

The Behavior-Hiding Module includes programs that need to be changed if there are changes in
the user-visible behavior of the system. Users may oe human users or devices and software that inter-
face with the SMMS. Behavior includes both required behavior prescribed by the requirements docu-
ment and security model as well as translation of generally prescribed behavior of the intermediate
command language to a specific human interface. (The intermediate command language is an abstrac-
tion of the user command language and is intended to capture the required semantics of the user com-
mands without prescribing their syntax or other characteristics of the human interface.) These pro-
grams determine the values to be sent to the virtual output devices provided by the Hardwares-Hiding
Module.

A:3 SOFTWARE DECISION MODULE

The Software Decision Module hides software design decisions that are based upon mathemati-
cal theorems. physical facts. and programming considerations such as algorithmic efficiency and accu-
racy. The secrets of this module are not described in the requirements documents. This module
differs from the other modules in that both the secrets and the interfaces are determined by the
software designers. Changes in these modules are more likely to be motivated by a desire to improve
performance than by externally imposed changes.

B:1 HARDWARE-HIDING MODULE DECOMPOSITION

The Hardware-Hiding Module comprises two modules.

B:1.1 ABSTRACT BASE MACHINE MODULE

The Abstract Base Machine Module hides characteristics of the hardware/software interface
that are likely to change if the computer is changed or replaced: number of processors, instruction set,
capacity for concurrent operations, operating system. This module may be an off-the-shelf compiler
plus a standard set of library routines for managing concurrency.

The security assertion for the Abstract Base Machine is basically that the entire module operate
correctly according to its specification. In particular, the protection mechanisms of the abstract base
machine must be trustworthy because they will be the mechanisms from which protection mechanisms
specific to message system security will be constructed.

B:1.2 DEVICE INTERFACE MODULE

The Device Interface Module hides characteristics of peripheral devices considered likely to
change.

For secure operation, each device interface must implement the protocol used to control the dev-
ice correctly. Under normal operation it should provide that all the data the device communicates to
the system software is provided without any deletions, additions or alterations. When a device mal-
functions, the device interface must be able to sense that fact and communicate it to appropriate
software so that appropriate action can be taken to ensure secure operation.

N he Hard Hiding Module D s

Our decomposition has it roots in the distinction commonly made between a computer and its
peripheral devices. Peripheral devices are commonly physically separated from the processor and
serve as an interface to human users or other computer systems. The SMMS requirements documen-
tation (2] makes this distinction with respect to input/output devices.

A particular peripheral device will be represented in the Device Interface Module if the SMMS
software must be aware of its characteristics in order to perform its function. Unless the SMMS sys-
tem makes some specific assumptions about *he device it will not be considered part of the Device
Interface Module.

It 1s likely that there will be physical devices that are totally invisible to the SMMS software.
An example is a disk drive upon which the “virtual hardware” maintains it file system. In so far as
these devices are not necessary at the Abstract Base Machine interface for the implementation of the
SMMS they will not be considered part of the Device Interface Module. Be careful not to confuse this
common distinction between the computer and its devices with the specific distinction defined here.

B:2 BEHAVIOR-HIDING MODULE DECOMPOSITION
The Behavior-Hiding Module consists of three modules.

B:2.1 INTERMEDIATE COMMAND LANGUAGE MODULE

The Intermediate Command Language Module hides the Intermediate Command Language
(ICL) from the rest of the system. This includes the number of commands, their names, their

parameters, and the semantics of the commands. It should be possible to add new commands, and
delete old ones or change their meanings by changing only programs in this wodule. This module
allows different family members to include only the ICL programs supporting a member’s ICL subset
without expending resources to support capabilities outside its subset.

The programs that implement the ICL commands must faithfully represent the user-ievel
objects (messages, message files, directories, etc.) using primitives provided by the entity monitor level
(entities, containment relationships) in a way consistent with the interpretation of the security model
for the message system.

B:2.2 HUMAN INTERFACE MODULE

The Human Interface Module hides the syntactic level of the user interface. This includes how
actions performed by the user (typing characters, moving pointing devices, etc.) are interpreted to con-
struct ICL requests. It also includes how the outputs of ICL commands are presented to the user.
Note that this module does not assume the names of ICL commands, their number, nor the number
and types of parameters they expect. The human interface finds out this information by using the
ICL module at system generation time or later.

The security assertions for this module are 1) that the user-level actions are correctly translated
into requests in the intermediate command language, 2) that requests are transmitted to the rest of the
system in the order they were made, 3) that no additional requests are added, and 4) that no requests
are deleted.

B:2.3 SECURITY POLICY MODULE

The primary secret of this module is the SMMS security policy; its secondary secret is how the
mechanisms of the abstract base machine are used to implement secure entities and how these
mechanisms assure the rest of the system that the security rules are enforced. [t is intended that the
major part of the properties that need to be proved about the system for security assurance will be
provable by reasoning about the implementations of programs in this module.

The Security Policy Module is responsible for providing a reference monitor that isolates the
security relevant state of the system and ensuring that the state transitions the system goes through
are as the security model prescribes. See the entity monitor module for more details.

B:2.4 EXTERNAL FORMATS MODULE

The External Formats Module hides message and audit data formats imposed by the require-
ments of the message system’s interfaces to other systems. How to determine the addressees of a mes-
sage. how to determine what fields a message contains and how to extract or set the contents of mes
sage fields are the primary secrets of this module.

This module must correctly implement its specification and be true to the standard external
message formats. Some parts of the format can be considered especially critical such as the security
labeling and releaser information.

B:3 SOFT'VARE DECISION MODULE DECOMPOSITION

TFe *- rware Decision Module hides choices made strictly by software designers, not dictated by
the requ -~ .ts document or the security model.

B:3.1 SOFT " LRE UTILITY MODULE

‘1 he Sofeware Utility Module hides implementations of programs of general usefulness to pro-
grammers programming different parts of the system. Programmers will be required to submit pro-
grams that are of possible general utility to those implementing other parts of the system for inclusion

in this module.

The security assertion for this module will depend on the programs that eventually end up in
this module.

B:3.2 SYSTEM GENERATION MODULE

The System Generatioin Module hidcs values of system parameters not bound until system gen-
eration time, which versions of modules are included during system generation, and which family
member is being constructed.

The security assertion for this module is that the features used in generating the SMMS system
must operate as specified. All parameters that are required by the modules must be provided and
meet constraints set by the module specifications (such as bounds, type, etc.)

10

C:1.1 ABSTRACT BASE MACHINE MODULE DECOMPOSITION

C:1.1.1 FILE SYSTEM MODULE (R)

The File System Module hides the conventions used to access programs and data residing on
secondary storage. It hides the mechanisms provided by the underlying machine and operating system
to restrict access (e.g. reading, writing, executing) to programs and data residing on secondary storage.

C:1.1.2 DOMAIN DEFINITION MODULE

The Domain Detfinition Module hides the mechanisms for implementing domains, the mechan-
isms for controlling the entry points to a domain, and the algorithms for modifying domains and
switching between domains.

C:1.1.3 EXCLUSION REGIONS MODULE

The Exclusion Regions Module hides the mechanism used to implement the exclusion relation on
regions of code. A region of code is a set of source code statements. A region of code is said to
exclude another if it is not safe to allow execution to enter the latter when execution is within the
former.

C:1.1.4 PROCESS CONTROL MODULE

The Process Control Module hides the number of processors and how processes are allocated
among them, the data structures and operations required to load a process on a processor, and the
data structures required to represent processes and keep track of their current states.
C:1.1.5 PROCESS SYNCHRONIZATION MODULE

The Process Synchronization Module hides the data structures and algorithms used for the syn-

chronization of processes and how synchronization operations are made indivisible.

C:1.1.6 PROGRAMMING LANGUAGE MODULE

The Programming Language Module hides the data representation and data manipulation and
sequence control instructions supported by the base machine.

C:1.1.7 SECURITY LEVEL MODULE

The Security Level Module hides the implementation of the abstract data type that represents
security levels, and also the implementation of the operations provided to manipulate objects of that
type.

C:1.2 DEVICE INTERFACE MODULE DECOMPOSITION

C:1.2.1 TERMINAL INTERFACE MODULE

The Terminal Interface Module hides characteristics of terminals such as screen size, keys avail-
able, control sequences, character encodings.

11

C:1.2.2 PRINTER INTERFACE MODULE

The Printer Interface Module hides characteristics of hard-copy output devices, such as printers,
typesetters, etc.

C:1.2.3 READER INTERFACE MODULE

The Reader Interface Module hides characteristics of read-only input devices, such as optical
character readers.

Documents must be read correctly and in their entirety without any additions or deletions.

C:1.2.4 NETWORK INTERFACE MODULE

The Network Interface Module hides characteristics of network interfaces to communications
networks, local area networks, etc.

The protocols for communication on the external network must be implemented correctly, espe-
cially with respect to addressing, labeling information, and signaling the boundaries on labeled infor-
mation such as messages.

C:2 BEHAVIOR-HIDING MODULE DECOMPOSITION

C:2.1 ICI, MODULE DECOMPOSITION
The Intermediate Command Language Module consists of three modules.

C:2.1.1 COMMAND PROCESSING MODULE

The Command Processing Module hides the ICL command set and information concerning the
exact number and types of parameters required. It provides a generalized interface for invoking any
possible ICL command, without reference to the exact syntax of that invocation.

Its security responsibility is that it use the SP.EM.ICL Control Module in the fashion required to
correctly invoke the ICL operation programs on the ICL Commands Module interface.

C:2.1.2 ENTITY DATA TYPES MODULE (H)

The Entity Data Types Module hides the representation of the entity data types that are acted
upon by the ICL commands. These data types correspond to abstract views of user-level objects such
as messages, message files, forms, etc. The operations provided here make finer grained accesses to
ICL objects than do the ICL commands.

The submodules of the Entity Data Types Module have been divided up to each contain access
programs that operate on a particular entity data type. They each have a primary secret that is the
representation of the data type and how it is manipulated by the access programs. Access programs
on each of these module’s interfaces will be able to directly affect (alter or inspect) only items of the
data type known to that module. Operations in one submodule will be able to indirectly affect objects
of other types through access programs on the other submodule interfaces.

The Entity Data Types Module contains the following submodules:
General Operations
Comment Operations
Device Operations
Directory Operations
Filter Operations
Field Operations
Form Operations
Message Entry Operations

12

Message File Operations

Message Operations

Paragraph Operations

Profile Operations

Text Operations

Utility Operations

The security responsibility of this module is that it implement the abstract ICL level data types

in terms of the security model objects and functions provided by the SP.Entity Monitor, and do so in
a way consistent with the security model interpretation for the message system.

C:2.1.3 ICL COMMANDS MODULE (H)

The ICL Commands Module provides individual programs for each of the ICL commands listed
in the requirements document [2]. ICL commands may affect more than one data item or type at a
time. For example, the ICL command to send a message can both alter the sender's message entry
and the inboxes of the recipients. Its primary secret is the semantics of the ICL commands.

The ICL Commands Module contains the following submodules, which have been divided along

the lines of the categories of commands found in [2|:
Device Cc nmands Module
Directory Commands Module
Filter Commands Module
Form Commands Module
Message File Commands Module
Message Commands Module
Profile Commands Module
System File Commands Module
Text File Commands Module
User Commands Module

Its security responsibility is that it use the types defined in the Entity Data Types module in a
way faithful to the interpretation of those data types to implement the ICL commands.

C:2.2 HUMAN INTERFACE MODULE DECOMPOSITION

The Human Interface Module is not decomposed into further modules at this time. This is
because different implementations of this module may meet vastly differing requirements and must
necessarily differ greatly in their internal structure. Another reason is that we want to be able to
integrate existing user interface programs with the SMMS. Future revisions to this guide may decom-
pose this module further.

C:2.3 SECURITY POLICY MODULE DECOMPOSITION
The Security Policy Module contains two submodules. Other modules may be defined in the
future.

C:2.3.1 ENTITY MONITOR MODULE

The primary secret of the Entity Monitor Module is the security policy of the SMMS, making
this module responsible for completely isolating the security relevant part of the system state. This
module acts as a monitor for secure entities and other abstractions recognized by the security model.
It is responsible for detecting attempted security violations and preventing them as well as protecting
itself from outside tampering. It also hides the classifications of entities and the clearances of users.
The specification must be consistent with the formal security model for the SMMS family.

13

C:2.3.2 MESSAGE ENTITY CONVERSION MODULE

The Message Entiiy Conversion Module hides the mapping between the abstract message struc-
ture provided by the message formats module and messages represented using entity structures of the
entity monitor module.

Its security responsibility is to correctly translate the security relevant part of the message data
and correctly construct the corresponding entity. The most critical part of this process is the security
labeling information, the addressees, the hierarchical relationship of the parts of the message, and
correctly delimiting the beginning and ending of the messages.

C:2.4 EXTERNAL FORMATS MODULE DECOMPOSITION

C:2.4.1 MESSAGE FORMATS MODULE
The Message Formats Module hides the external formats of formal military messages.

C:2.4.2 MESSAGE ACCOUNTABILITY LOGS MODULE
The Message Accountability Logs Module hides the format of the message accountability logs.

C:3 SOFTWARE DECISION MODULE DECOMPOSITION

The Software Decision Module consists of two modules.

C:3.1 SOFTWARE UTILITY MODULE DECOMPOSITION
This module may be decomposed as the number of programs in it grows. It currently contains
No programs.

C:3.2 SYSTEM GENERATION MODULE DECOMPOSITION

C:3.2.1 SYSTEM GENERATION PARAMETER MODULE

This module provides values for all the system generation parameters defined in other modules,
including those specified in module interfaces and those defined in the module implementations. There
is a submodule of the System Generation Parameter Module for each module in the rest of the system;
each of these submodules is in turn composed of an external parameter submodule and an internal
parameter submodule. External parameters of a module are available to other modules; internal
parameters are secrets of the module. The primary secrets of this module are the values of the param-
eters for a particular version of the system.

C:3.2.2 MODULE VERSION SELECTION MODULE

This module stores alternative implementations of each module. It allows a user to indicate
which alternative(s) should be chosen for each module. If the module implements an abstract data
type, a different alternative may be specified for each variable of that type. The secret of this module
is the library structure used to store the various versions of the modules and the procedure for insert-
ing the selected implementation in the code.

C:3.2.3 SUBSET SELECTION MODULE

This module selects subsets of each module in order to assemble a desired subset version of the
system. Its primary secret is the “*Uses™ relation; the secondary secrets are the representation of the
relation and the algorithms used to select the programs that will be included in the resulting system.

14

C:3.2.4 SUPPORT SOFTWARE MODULE

This module includes additional software required to generate and check out a running system,
including a macro-processor, a testing program and test data (either stored data or tools to automati-
cally generate it), and communications software. The compiler resides in the Abstract Base Machine
Module and not in this module because it kuows the secret of the base machine’s instruction set.

This module must operate according to its specification to the extent that its features are
depended upon by the SMMS system.

15

IV. REFERENCES

1] Parnas, DL, “On the Design and Development of Program Families,” I[EEE Trans. on
Software Eng., Vol. SE-2, pp.1-9, Mar. 1976.

[2] Quinn, J.T., C.L. Heitmeyer,-M.R. Cornwell, C E. Landwehr, J.D. McLean, Software Require-
ments for the Secure Military Message System Family, NRL Memorandum Report # pending.

{3] Cornwell, M., Moore, A., Security Architecture for a Secure Military
Message Systems, NRL Formal Report 9187, April 28, 1989.

[4] Parnas, D.L, “Designing Software for Extension and Contraction”. Proceedings of the Srd Inter-
national Conference on Software Engineering (10-12 May 1978), pp. 264-277.

[5] Cornwell. M.R., SMMS FSP ‘Uses’ Specification, NRL Technical Memorandum 5590-74, 4
March, 1988.

[6] Process structure documentation. to be published.

[7] Parnas, D.L., “On the Criteria To Be Used in Decomposing Systems into Modules”, Comm.
ACM, Vol. 15, No. 12 (December 1972}, pp. 1053-1058.

[8] Cornwell, M.R., Entity Monitor Module Specification (DRAFT)

9] Parnas, D.L.. H. Wuerges. “Response to Undesired Events in Software Systems”, Proc. Second
Int. Conf. Software Eng., pp. 437-146, 1976.

(10] Britton, K. and D.L. Parnas, A-7E Software Module Guide, NRL Memorandum Report 4702,
Dec. 8, 1981.

[11] Cornwell, M., A Software Engineering Approach to Designing Trustworthy
Software IEEE Proceedings, Computer Society Symposium on Security
and Privacy, pg. l148-156, May 1989.

16

abstract interface

abstraction

access function

access program

domain
hidden submodule

interface

internal program

module

module facility

module hierarchy

module implementation

module interface

V. GLOSSARY

an abstraction that represents more than one interface (see inter-
face, module interface); it consists of the assumptions that are
included in all of the interfaces that it represents.

a description of a set of objects that applies equally well to any
one of them. Each object is an instance of the abstraction.

see access program

a program that may be called by programs outside of the module
to which it belongs. Most run-time communication between
modules is effected by invocation of access programs. There are
several different sorts of access functions: some return information
to the caller, some change the state of the module to which they
belong, and some do both.

a set of access permissions. The access permissions specify a set of
objects and set of operations that may be applied to those objects.

a submodule whose existence is part of the secret of the parent
module.

(1) between two programs: the assumptions that each programmer
needs to make about the other program in order to demonstrate
the correctness of his own program.

(2) between a program and a device: assumptions about the device
that must be accounted for in the program in order for the pro-
gram to work as expected.

a program that is not accessible to programs outside the module;
the existence of the internal program is part of the secret of the
module.

a programming work assignment consisting of one or more pro-
grams. A module may be divided into smaller modules (submo-
dules).

the access programs and events provided by a module in order to
allow user programs to be independent of the module secret. A
complete description of a facility is a specification of the module.

a hierarchy defined by the relation “contains™ on pairs of modules.

the algorithms, data structures, and programs that satisfy the
module specification.

the set of assumptions that the authors of external programs may
make about the module. It includes restrictions on the way that
the module may be used. In the SMMS software, modules com-
municate either by one module using access program from the
other module. or by one module inspecting the value of a shared
object that was set by the other module. The interface consists of
assumptions about the availability of the access programs, the syn-
tax of the calls on the access programs, the behavior of the access
programs, and the meaning of events. See also interface.

17

]

module secret
module specification

module’s structure
primary secret
process

process definition

program

secondary secret

secret

security property

submodule

subprogram
sysgen parameters

undesired event (UE)

undesired event assumption

use, uses

user programs

virtual computer

virtual machine

see secret, module implementation
a description of as module interface; see also module facility.

the way that a software module is divided into submodules and
programs

the characteristics other than decisions by the module designer
that a module is intended to hide. See also secondary secret

a subset of the run-time events of the system used as administra-
tive units in the run-time allocation of processes.

the program that controls the sequence of actions by a process.

a named, machine executable, description of an algorithm. The
name may be used to invoke the program’s execution. A program
may include a description (declaration) of the data structures that
it uses: it may invoke other programs and refer to data structures
that have been described in other programs. See also subprogram,
process definition.

software design decisions made to implement the abstractions that
hides the primary secret.

all the facts about the module that are not included in its inter-
face; 1.e., assumptions that user programs are not allowed to make
about the module. The correctness of programs in other modules
must not depend on those facts. The secrets tell how the module’s
specification has been satisfied. See also module specification, pri-
mary secret, secondary secret.

A property from among a set of properties that taken together are
a sufficient condition for the system to be deemed secure.

any module that is a component of a higher level module.

a subprogram is a program that can be invoked by another pro-
gram. A subprogram may be either a subroutine or macro.

a symbol used as a placeholder for values that will be supplied just
before the system is generated.

a run-time event that the designers hope will not occur. Produc-
tion versions of the SMMS will assume that a significant portion of
them do not occur.

assumptions about what constitutes improper use of a module by
user programs, e.g., calling an access program with parameters of
the wrong type.

Program A uses program B is there must be a correct version of B
present for A to run correctly. A program uses a module if it uses
at least one program from that module. A module uses another
module if at least one program uses that module.

all programs that use programs from a module but are not part of
that module. The term “‘user” is relative to the module being dis-
cussed.

a computer-like set of instruction implemented, at least in part, by
software.

see virtual computer

18

visible submodules submodules whose existence is visible to user programs.

19

